Febrile Illness Modeling

Compendium of model results

BILL& MELINDA GATES foundation

May 20, 2013

Agenda

Background and approach

Baseline analysis

Key drivers of fatalities

Intervention scenarios

Poor management of childhood fever drives ~2-4M deaths

More than 350M¹ fevers in under fives every year...

Not all are life-threatening

Parents often unaware of danger signs

Providers often lack tools to adequately manage

...from multiple and diverse causes...

...with significant gaps in their management

Estimates suggest ~2-4M² childhood deaths driven by fever

Malaria causes >500K² deaths in under fives

>90% in Africa

<u>Pneumonia</u> causes >1.1M² deaths in under fives

• ~50% in Africa

<u>Diarrhea</u> causes >700K² deaths in under fives

• ~50% in Africa

Model designed to test interventions across entire spectrum

Recapitulates end-to-end flow of febrile population in any given context

End-to-end linear flow of patients from incidence of fever to outcomes

Disease Setting	Care Seeking	Diagnosis	Treatment	Progression	OUTCOMI Fatalities
 Where does patient reside? Rural Urban 	 What is the likelihood patient seeks care? 	 What is the likelihood of correct diagnosis? 	 Are meds available and how does this vary by etiology? 	 What is the likelihood that a disease progresses to severe? 	 System cos Example
 What etiology is causing fever? Malaria Pneumonia EDD Viral Other Co-Infection 	 Where do they seek care? Public Private Formal Informal 	 How does it vary with Setting? Type of facility? Etiology of fever? 	 At what rate do patients adhere to the prescribed treatment? 	 At what rate do patients seek care when severe, how frequently are they referred for in-patient treatment? 	branching points in model logi

Allows direct comparison of interventions across spectrum of fever management

Detailed model logic

Subsequent branching is depicted	Further branching not depicted (for visual simplicity)	End State Result
--	---	------------------

By design, first-order model has some limitations

First-order prioritization to be followed by deeper analysis

Description	Considerations
Model is fully linear	Model intended for baseline characterization and first order prioritization – look later at temporal dynamics and feedback loops
 Model does not capture interdependencies between variables 	Captured exogenously through manual adjustment where key interdependencies are known and informed assumptions can be made
 Model provides broad system view, but necessarily simplifies key points of complexity 	Deep dive analyses can be conducted external to model for points of simplification identified as priority (e.g. steps involved in correct diagnosis and treatment selection)

Countries chosen based on geographic and epidemiological diversification

Limited set of parameters, primarily linked to natural progression of disease, were considered country-agnostic

	Model parameter	Principal source used for Tanzania	specific
Enidomiology	Etiology of fever	Tanzania-specific literature	\checkmark
Epidemiology	Disease progression	Estimated based on interviews	X
	Rate of presentation	DHS report	~
Care-seeking	Type of facility	DHS report	\checkmark
	Correct Dx	Triangulated from literature	~
Diagnosis and Treatment	Drug availability	Triangulated from literature	\checkmark
	Correct Tx given Dx, avail.	Estimated based on interviews	X
Outcomes	Referral rates	Triangulated from literature	\checkmark
Outcomes	Recovery rates	Estimated based on interviews	X
	Drug costs	Medicine Price Monitor (country-specific)	\checkmark
Costs	Cost of facility visit	Economic model from WHO	\checkmark
	Inpatient costs	Pan-Africa estimates	X

Agenda

Background and approach

Baseline analysis

Key drivers of fatalities

Intervention scenarios

Nigeria and Burkina Faso have highest under-5 fever mortality rates while Bangladesh has lowest

Input

Nigeria has highest facility costs, while Bangladesh has most expensive drugs

Outpatient visit costs primarily from cost of care rather than medications

Inpatient visit costs significantly higher because of expensive procedures and high daily costs

Baseline differences emerge across the patient flow

	Epidemiology	Care-seeking	Diagnosis & treatment	Referral & outcome
Tanzania		Bas	eline	
Nigeria	High malaria	High use of private facilities Less care-seeking	Presumptive	
Burkina Faso	low bacterial	High use of public facilities Less care-seeking	antimalarials	Most referral of severe disease
Bangladesh	Low malaria, high bacterial	High use of private facilities Less care-seeking	Presumptive treatment with antibiotics	Least referral of severe disease

Source: BCG Analysis

Input

Input

Malaria prevalence highest in Burkina Faso and Nigeria

Malaria is very small share of fevers in Bangladesh

Over 35% of febrile cases in Burkina Faso and Nigeria are caused by malaria

1. Represents co-infection with a bacterial disease. 2. Includes bacterial and viral diseases Source: BCG Analysis

Majority of care-seeking in Bangladesh and Nigeria is private

Public facilities play much larger role in Tanzania and Burkina Faso

% of febrile cases 100 16% 27% 29% 34% 80 10% 60 28% 55% 17% 40 11% 52% Does not present 7% when mild 45% 20 Public¹ 35% 1% 22% Formal private² 13% Informal private³ 0 Bangladesh Nigeria Tanzania Burkina Faso

Tanzania has >10% higher rates of care-seeking than other focus countries

1. Comprised of all government-run facilities, including hospitals, clinics, health centers, mobile clinics, public fieldworker, etc. 2. Includes private hospitals, private health centers / clinics, private fieldworkers, mission hospitals, NGOs, etc. 3. Includes shops, traditional practitioners, private pharmacies, private chemists. Source: BCG Analysis, DHS surveys

Input

Input

Widespread presumptive treatment across all 4 focus countries

Providers in Tanzania / Nigeria / Burkina presume malaria, those in Bangladesh presume bacteria

Provider behavior based on historical prevalence of disease

- Despite increasing availability of <u>malaria</u> RDTs, low adherence to result
- Respiratory rate rarely checked for <u>pneumonia</u>
- Viruses typically treated unnecessarily with antimalarials or antibiotics

Care seeking behavior also drives overtreatment

- In <u>Tanzania</u>, Nigeria, and Burkina Faso, antimalarials generally available without a prescription
- In <u>Bangladesh</u>, providers give some kind of antibiotic to most patients, but now many S. typhi strains are resistant

No more than ~18% of severe cases treated on in-patient basis

Lowest rates in Bangladesh and highest in Burkina Faso

Severe febrile patients in Tanzania more likely to

present than in other countries

% of severe cases 100 11% Does not 23% 25% 31% present 80 when severe 60 89% 40 77% 75% Presents 69% when severe 20 0 Bangladesh Nigeria **Burkina Faso** Tanzania 9% 2% 30% Malaria: 25% Bacterial 13% 19% 17% 17% pneumonia:

Only ~18% of severe patients who present in Burkina Faso reach appropriate referral facility

(IV

Input

Agenda

Background and approach

Baseline analysis

Key drivers of fatalities

Intervention scenarios

Overview of gaps in care of febrile illness

Top-level finding а Priority drivers are similar across sub-Saharan Africa, differ for Bangladesh Geographyb Patients who do not present when mild are almost twice as likely to become severe independent drivers of Severe cases not reaching referral facility is biggest driver of avoidable deaths С fatalities Bacterial disease is major driver in countries where malaria is less prevalent d Geographyspecific drivers of In sub-Saharan Africa, more missed diagnoses for bacterial disease than for malaria e fatalities f In Bangladesh, low medicine availability limits ability to treat correctly

Individual drivers of avoidable deaths similar across SSA, some differences in Bangladesh

Bangladesh % avoidable

a

Output

Across <u>all focus countries</u>, fevers are almost twice as likely to become severe if patient does not seek treatment when mild

In Nigeria and Burkina Faso, over 10% of fevers that are not presented when mild progress to severe

b

Across <u>all focus countries</u>, most fatalities occur in cases that never reach the hospital

> 90% of deaths do not occur in the hospital

Output

Bacterial disease is key driver of fatalities in Bangladesh and Tanzania, less significant when malaria rate is higher

Bacterial diseases drive >70% of deaths in Bangladesh and Tanzania but <40% in Nigeria and Burkina Faso

1. Included in "Bacterial other" for Tanzania, Nigeria, and Burkina Faso. 2. Represents co-infection with a bacterial disease. 3. Viral cases represent a broad spectrum of etiologies

% of fever fatalities

In <u>focus countries in sub-Saharan Africa</u>, most missed diagnoses among non-viral are bacterial infections

Bacterial infections comprise 18% of missed diagnoses

 Calculated as sum of % of incorrect diagnoses for each country divided by 3. Source: BCG Analysis

е

In <u>Bangladesh</u> correct medication is often unavailable at primary site of care, so fevers diagnosed correctly are treated incorrectly

Of the 48% of correctly diagnosed fevers for which medication is not available, model assumes that half are able to buy at secondary facility

Agenda

Background and approach

Baseline analysis

Key drivers of fatalities

Intervention scenarios

Overview of interventions and high-level findings

	Intervention	Comments
1 Diagnosis	1a Universal access to malaria RDTs	 Impact in malaria-endemic settings¹ is improved bact. dx Gains offset if RDT+ not assessed for co-infection
	1 PoC diagnostic for bacterial vs. viral illness	 Technology to be developed Expected to be implemented together with malaria RDT
	1C Presumptive abx mgmt of all febrile cases	 May effectively address bacterial disease in immediate term, but may drive abx resistance in long long run
2 Other aspects of patient flow	Improved care-seeking	 Very high impact due to poor outcomes for children who never receive treatment
	Improved medicine availability	 Incorporates both antimalarial and abx availability Cost-savings of tx when mild due to severe disease averted
	Improved referral	Addresses biggest gap in systemHigh cost intervention because of inpatient costs
3 Integrated approach	Multi-pronged interventions	 Incorporates combinations of promising interventions

No single intervention averts more than 26% of fatalities

Ranges reflect differences across countries

	Intervention	Impact (% fatalities averted)	Cost-effectiveness (\$/ fatality averted)
0	1a Universal access to malaria RDTs	4-22% ¹	\$106-\$296 ¹
Diagnosis	PoC diagnostic for bacterial vs. viral illness	4-20% ²	\$115-\$523 ²
	Presumptive abx management of all febrile cases	5-19% ¹	\$(36)-\$423 ¹
2 Other aspects of patient flow	Improved care-seeking	14-16%²	\$136-\$351 ²
	Improved medicine availability	2-7% ²	\$(40)-\$(11) ²
	Improved referral	3-6% ²	\$693-\$920 ²
3 Integrated approach	Multi-pronged interventions	3-34% ²	\$(135)-652 ²

Impact of malaria RDT in context of presumptive malaria mgmt derived from improved identification of bacterial disease

Presumes application of malaria RDT in context of presumptive malaria mgmt

	RDT (+)	RDT (-)	Expected outcome
Strategy 1 Universal RDT – no other policy change	Antimalarial & further clinical assessment	Further clinical assessment	 RDT (-) result increases likelihood of identifying bacteria when mild
Strategy 2 Abx for RDT (-)	Antimalarial & further clinical assessment	Antibiotic	 Ensure almost all mild bacteria infections correctly treated Broad unnecessary treatment of viral with abx
Strategy 3 Abx for severe fevers	Antimalarial, plus Abx if severe	Further clinical assessment (Abx if severe)	 Consistent abx when severe drives improved outcomes RDT (-) result increases likelihood of identifying bacteria when mild

1a

Input

Abx for severe fevers (Strategy 3) has greatest impact and is most cost-effective across Tanzania, Nigeria, and Burkina Faso

For all strategies, impact in Tanzania ~2x impact in Nigeria and Burkina Faso

Scenario parameters

Strategy 1:

 RDT-minus result for nonmalaria etiologies increases likelihood of correct diagnosis by 20%

Strategy 2:

 99% of bacterial etiologies treated correctly with abx; all viral cases treated incorrectly

Strategy 3:

- RDT-minus result for nonmalaria etiologies increases likelihood of correct diagnosis when mild by 20%
- RDT also used at severe presentation, consistent abx use when severe

Costs:

- Malaria RDT ~\$0.70 per test
- Training and implementation costs not in scope

If no further assessment for co-infection on RDT+, benefit of RDT outweighed by increased fatalities in Nigeria and Burkina Faso

Nigeria and Burkina Faso have 3-4x co-infection rates of Tanzania

Add'l fatalities from co-infection in Nigeria and Burkina Faso greater than fatalities averted

Scenario parameters

Probabilities:

- Strategy 1: assumes RDTminus result for other nonmalaria etiologies increases likelihood of correct diagnosis by 20%
- Revision: 50% of co-infections incorrectly diagnosed

Costs:

- Malaria RDT ~\$0.70 per test
- Training and implementation costs not in scope

Bacterial PoC diagnostic most impactful in Tanzania because of relatively higher rates of bacterial disease

~60% of bacterial cases correctly diagnosed (>97% for malaria)

If malaria presumptively treated but bacterial disease prevalent, intervention has greater impact

Scenario parameters

Probabilities:

- Probability of correct diagnosis for bacterial and viral etiologies of 90%
- Probability of correct diagnosis of malaria of 95% from simultaneous RDT use
- Caretakers select providers for availability of diagnostics (presentation improves by 5% of baseline value)
- Assume consumables cost ~\$0.70 / test (benchmarked against current malarial RDT
- No exogenous cost impact

Bact. diagnostic limits abx overuse for viral cases in Bangladesh

For baseline, cost of diagnostic greater than savings from reducing viral abx use

If cost of diagnostic decreases or cost
of abx increases, intervention
decreases system costsScenario parametersProbabilities:

Probabilities:
Probability of correct diagnosis for bacterial and viral etiologies of 90%

Costs:

- Assume consumables cost ~\$0.70 / test (benchmarked against current malarial RDT cost)
- No exogenous cost impact

Presumptive abx mgmt improves treatment of bacterial fevers, but impact may be attenuated in long run by drug resistance

Scenario parameters

No resistance:

99% of bacterial etiologies treated correctly with abx; all viral cases treated incorrectly

Resistance:

- 99% of bacterial etiologies treated correctly with abx; all viral cases treated incorrectly
- Use of costlier second-line abx
- 1.5x progression to severe for bacterial disease

Costs:

Training and implementation costs not in scope

Input

Interventions not focused on diagnosis were also assessed

Patient flow from incidence to outcome

	Care-seeking	Drug availability	Referral
Example programs • Mass educatic campaign		 Programs to boost supply chain Subsidized medicine 	 Ambulance coverage Subsidized travel Provider training on danger signs
Baseline values			
Tanzania	84% ¹	82% ²	12% ³
Nigeria	73% ¹	72% ²	10% ³
Burkina Faso	66% ¹	69% ²	18% ³
Bangladesh	71% ¹	23% ²	8% ³
Presumed effect of intervention	x1.2	x1.5	x2

1. % of cases that present with mild disease; average across rural and urban settings. Rate of presentation of severe disease was also increased proportionally. 2. % of non-viral cases for which the correct medication (antimalarial or antibiotic) was available. 3. % of cases presenting with severe disease who are referred and reach referral facility. Source: BCG Analysis © 2012 Bill & Melinda Gates Foundation

Improving care-seeking has highest impact among non-Dxfocused interventions evaluated

Treatment when severe costs more than when mild, so referral increases costs while drug availability reduces disease progression and lowers costs

Scenario parameters

Care-seeking:

Improve rate of care-seeking by 20% of baseline value for mild and severe

Drug availability:

 Medicine availability for malaria and bacterial disease increases by up to 50%

Referral:

Referral rate doubles

Costs:

Training and implementation costs not in scope

Input

Multi-pronged interventions simultaneously address multiple drivers of improved outcomes

1. Value for correct diagnosis of each disease were consistently incremented by a flat 15%, which represents an average of 20% increase across all disease. Source: BCG Analysis © 2012 Bill & Melinda Gates Foun

Improving care-seeking and diagnosis has highest impact with lowest cost per fatality averted

\$ / verted Dx and referral **Care-seeking** Strategy A Bangladesh 600 and referral Strategy B Strategy C Nigeria Strategy D Bangladesh 400 Burkina Faso Tanzania Bangladesh **Burkina Faso** Nigeria Tanzania 200 Nigeria Dx and med availability Tanzania Burkina Faso 0 Burkina Faso **Care-seeking and Dx** 🔺 Nigeria 🔺 Tanzania Bangladesh -200 15 0 10 20 25 30 % fatalities averted Output

Tanzania has greatest impact for interventions involving diagnosis

Scenario parameters

Strategy A:

- Rate of care-seeking increases by 20% of baseline value for mild and severe
- Referral rate doubles

Strategy B:

- Rate of care-seeking increases by 20% of baseline value for mild and severe
- Rate of correct Dx increases by 15% for each disease

Strategy C:

- Rate of correct Dx increases by 15% for each disease
- Medicine availability for malaria and bacterial disease increases by up to 50%

Strategy D:

- Rate of correct Dx increases by 15% for each disease
- Referral rate doubles

Costs:

 Training and implementation costs not in scope

Interventions targeting all 4 drivers of improved outcomes have greater impact in Tanzania, Nigeria, and Burkina than Bangladesh

20-35% impact on fatalities when all 4 drivers of improved outcomes applied simultaneously

Scenario parameters

Strategy A:

- Rate of care-seeking increases by 20% of baseline value
- Referral rate doubles
- Strategy B:
- Rate of care-seeking increases by 20% of baseline value
- Rate of correct Dx increases by 15% for each disease
 Strategy C:
- Rate of correct Dx increases by 15% for each disease
- Medicine availability increases by up to 50%
- Strategy D:
- Rate of correct Dx increases by 15% for each disease
- Referral rate doubles

All:

- Rate of care-seeking increases by 20% of baseline value
- Rate of correct Dx increases by 15% for each disease
- Medicine availability increases by up to 50%
- Referral rate doubles

An integrated intervention that targets multiple drivers of patient outcomes is powerful but should prioritize care-seeking

Across all countries, strategies A and B have greatest impact

Comments

- a Improving care-seeking and either referral or diagnosis achieves >60% of impact of a comprehensive intervention
- In SSA countries strategies C and D possess ~50% of impact of strategies A and B, but in Bangladesh impact of C and D is <20% that of A and B</p>
- C Potential overall impact greatest in Tanzania and Burkina Faso, where use of public and formal private facilities is higher.

For more information please contact:

Enric Jané, Program Officer, Integrated Delivery Enric.Jane@gatesfoundation.org BILL& MELINDA GATES foundation