Pneumonia, Malaria and Diarrhoea in Africa: Trends and Treatment Effectiveness

Theresa Diaz, MD MPH Chief Knowledge Management and Implementation Research Unit, Health Section, UNICEF New York

Integrated Community Case Management (iCCM): Evidence Review Symposium 3–5 March 2014, Accra, Ghana

 $\mathbf{\hat{}}$

Overview

• Mortality trends

Effectiveness of treatments and recommendations

Trends in health seeking and treatment coverage

Sub-Saharan Africa has substantially accelerated its reduction

Annual rates of reduction (ARR) in the under-five mortality rate, %, by region, since 1990

Children in Sub-Saharan Africa and Southern Asia face a higher risk of dying before their fifth birthday

Note: This map is stylized and not to scale. It does not reflect a position by UN IGME agencies on the legal status of any country or territory or the delimitation of any frontiers.

Exciting new findings on disparities

- Many regions have reduced disparities in under-five mortality between the poorest and the richest <u>except</u> <u>Sub-Saharan Africa</u> and South Asia
- Under-five mortality rate has declined among even the poorest in all regions

Source: UNICEF analysis based on Pedersen, J., et al., Levels and Trends in Inequity and Child Mortality: Evidence from DHS and MICS surveys', working paper, unpublished, 2013.'

Still, progress is insufficient to achieve MDG4 target by 2015 and substantial acceleration is required

Achievement of MDG 4 by year, globally and by region, if current trends continue in all countries

Source: UNICEF analysis based on IGME 2013.

Infectious diseases such as pneumonia, diarrhoea and malaria are the leading killers of children under age 5; roughly 44% of deaths in children under 5 occur during the neonatal period

Global distribution of deaths among children under age 5, by cause, 2012

Estimates are rounded, and therefore may not sum to 100%.

Source: UNICEF analysis based on IGME 2013, WHO and CHERG 2013.

Analyzing Mortality causes in poor compared to rich children (Nigeria 2011)

Pneumonia

Which antibiotic is better for pneumonia?

Kabra SK. Cochrane Database Syst Rev 2006;3:CD004874

Comparisons	OR		
Ambulatory			
Amoxicillin better than cotrimoxazole	1.33 (1.05-1.67)		
Azithromycin equal erythromycin	1.17 (0.70-1.95)		
Azithromycin equal amoxicillin-clav	1.02 (0.54-1.95)		
Amoxi-clav equal cefpodoxime	0.69 (0.18-2.60)		
Hospital			
Inj Procaine Penicillin better than cotrimoxazole	2.64 (1.57-4.45)		
Inj Penicillin + gentamicin better than chloramphenicol	1.61 (1.02-2.55)		
Inject penicillin equivalent to oral amoxicillin	1.03 (0.81-1.31)		

Why oral Amoxicillin for chest in-drawing Pneumonia?

Amoxicillin Penicillin Pneumonia International Study (APPIS) conducted a multicentre trial in 8 countries:

Clinical outcome for oral amoxicillin and injectable penicillin was comparable

Penicillin + Gentamicin Vs Chloramphenicol for Very Severe Pneumonia

- Open RCT in Papua New Guinea:
- Chloramphenicol (n= 559) Vs Penicillin + Gentamicin daily (n= 557)
 - Outcome similar in both regimens
- Multicentre RCT in 8 sites in 7 countries (n= 958) with Ampicillin:
 - Higher treatment failure and more deaths in Chloramphenicol group

Gentamicin plus Ampicillin is better choice for very severe pneumonia

Pneumonia Treatment

WHO Regimen Recommendations

- Oral amoxicillin twice daily for 5 days for treatment of fast breathing and chest in drawing pneumonia in children 2-59 months*
- Injectable ampicillin plus gentamicin for very severe pneumonia in children 2-59 months of age

*In high HIV settings, chest in-drawing pneumonia is managed as severe pneumonia

Too few children with pneumonia are receiving appropriate care, especially in Sub-Saharan Africa

Proportion of children under five with suspected pneumonia taken to an appropriate health-care provider, 2007–2012

Gaps in appropriate careseeking for suspected childhood pneumonia exist across household wealth quintiles

Share of children under age 5 with suspected pneumonia taken to an appropriate healthcare provider or facility, by household wealth quintile and region, 2006–2011 (per cent)

Diarrhoea

Meta-analysis of studies comparing reduced osmolarity and standard WHO ORS

Stool output

Study	Int No	ervention Mean (SD)	No	Control Mean (SD)	Standardised mean difference (95% Cl fixed)	Weight %	Standardised mean difference (95% CI fixed)
Bangladesh 1995a ¹¹ Bangladesh 1995b ¹² Bangladesh 1996a ¹³ CHOICE 2001 ¹⁴ Colombia 2000 ¹⁵ Egypt 1994 ¹⁶ Egypt 1996a ¹⁷ Egypt 1996b ¹⁸ India 1984a ¹⁹ Panama 1982 ²³ USA 1982 ²³ WHO 1995 ²⁴	19 30 18 341 20 45 94 22 33 20 221	4.84 (0.65) 4.50 (0.61) 4.26 (0.52) 4.56 (0.59) 1.42 (0.78) 5.06 (0.31) 5.42 (0.71) 2.40 (1.39) 4.20 (0.65) 1.08 (0.87) 1.12 (0.79) 4.17 (0.82)	19 30 28 334 69 21 44 96 22 30 20 218	5.20 (0.36) 4.63 (0.37) 4.57 (0.62) 4.61 (0.65) 1.60 (0.70) 5.47 (0.42) 5.30 (0.74) 2.71 (1.28) 4.30 (0.60) 1.23 (0.68) 1.35 (0.60) 4.45 (0.83)		1.9 3.2 2.3 36.6 7.5 1.9 4.8 10.2 2.4 3.4 2.1 23.5	0.671 (-1.326 to -0.015) -0.254 (-0.763 to 0.254) -0.522 (-1.125 to 0.080) -0.081 (-0.231 to 0.070) -0.241 (-0.574 to 0.091) 1.085 (-1.745 to -0.425) 0.164 (-0.252 to 0.580) -0.231 (-0.517 to 0.054) -0.157 (-0.749 to 0.435) -0.189 (-0.684 to 0.307) -0.321 (-0.946 to 0.303) -0.339 (-0.527 to -0.150)
Total (95% CI) χ ² =17.64, (df=11), <i>z</i>	934 ⊨4.59		931	-	• 2 0_	100.0 - 2	0.214 (-0.305 to -0.123)
Hahn et al. BMJ, 2001				F: trea	avours Favo atment cont	urs Tol	

Meta-analysis of studies comparing reduced osmolarity and standard WHO ORS

Unscheduled intravenous infusion in children

Study	Intervention n/N	Control n/N	Odds ratio (95% Cl fixed)	Weight %	Odds ratio (95% CI fixed)
Bangladesh 1995a ¹¹	4/19	5/19		3.0	0.75 (0.17 to 3.36)
Bangladesh 1996a ¹³ *	0/18	0/18		0.0	Not estimable
CHOICE 200114	34/341	50/334	-#	34.5	0.63 (0.40 to 1.00)
Colombia 2000 ¹⁵	7/71	16/69		11.1	0.36 (0.14 to 0.95)
Egypt 1996a ¹⁷	6/45	5/44		3.3	1.20 (0.34 to 4.26)
Egypt 1996b ¹⁸	1/94	8/96	_	5.9	0.12 (0.01 to 0.97)
India 1984a ¹⁹ *	0/22	0/22		0.0	Not estimable
India 2000b ²¹	11/88	12/82	_ _	8.2	0.83 (0.35 to 2.01)
Mexico 1990a ²²	2/82	7/84	-	5.1	0.28 (0.06 to 1.37)
Panama 1982 ²³ *	0/33	0/30		0.0	Not estimable
USA 1982 ²³	0/15	1/20	_	1.0	0.42 (0.02 to 11.03)
WHO 1995 ²⁴	33/221	43/218		27.9	0.71 (0.43 to 1.18)
Total (95% CI)	98/1049	147/1036	•	100.0	0.61 (0.47 to 0.81)
χ [*] =6.52, (df=8), z=3.5	3	_			
		0.	01 0.1 1 10 ⁻	100	
		Favo	urstreatment Favourscor	ntrol	

* No catients required intravenous infusion.

Meta-analysis of studies comparing reduced osmolarity and standard WHO ORS Vomiting

Hahn et al. BMJ, 2001

Effect of Zinc Treatment on Duration of Acute Diarrhoea/Time to Recovery

Therapeut	ic Effects of Zinc or	n Diarrhoea		
Severity				
Country	Diarrhoea <u>Outcome</u>	Percent <u>Reduction</u>		
India	Frequency	18		
India	Frequency	39		
Bangladesh	Output	28		
India	Output	38		
Brazil	Frequency	59		

Potential impact of ORS and Zinc treatments

- Low Osmolarity ORS¹
 - 39% fewer unscheduled IV fluids than ORS
 - 29% less episodes of vomiting than ORS
 - Decreased diarrheal output
- Zinc²
 - 25-29% reduction in duration of diarrhoea
 - 40% reduction in treatment failure or death in persistent diarrhoea
 - Prevents reoccurrence of diarrhoea for 3 to 4 months.

Recommendations for management of diarrhoea: 2004

unicef

ACUTE DIARRHOEA

- Liberal use of low-osmolarity ORS to correct and prevent dehydration

- Zinc for 10-14 days to shorten duration and severity of diarrhoea

- Continued feeding and additional fluids

Only a third of children with diarrhoea in developing countries receive ORS and this trend remains stagnant

Lowest ORS coverage in countries with the highest levels diarrhoea deaths among children

Source: UNICEF analysis based on IGME 2013, WHO and CHERG 2013, and UNICEF global databases 2013.

Malaria

Why combination therapy?

The potential value of drug combinations, notably those including an artemisinin derivative (ACT)

- to improve efficacy,
- delay development of drug-resistance and prolong the useful therapeutic life of antimalarial drugs

WHO Informal Consultation on "Use of Antimalarial Drugs"

(November 2000, Geneva):

Why Artemisinin-based combinations?

Artemisinins

- Rapid and sustained reduction of the parasite biomass
- Rapid resolution of clinical symptoms
- Reduction of gametocyte carriage
- Duration of treatment = 2-3 days in combination (7 days in monotherapy)
- Broad stage specificity
- No reported resistance thus far

Treatment of fever/malaria

- Artemisinin-based combination therapies (ACT) are more effective to treat falciparum malaria in most areas
- Where ACT is introduced, use laboratory-based diagnosis with microscopy or rapid diagnostic tests (RDTs)
- Treat malaria according to national guidelines such as for vivax malaria

Thirty-five countries are responsible for 98% of the total malaria deaths worldwide...

To achieve the 2015 targets, achieving malaria control goals in the following countries is essential:

- 30 countries in Africa: Nigeria, Democratic Republic of Congo, Uganda, Ethiopia, Tanzania, Sudan, Niger, Kenya, Burkina Faso, Ghana, Mali, Cameroon, Angola, Cote d'Ivoire, Mozambique, Chad, Guinea, Zambia, Malawi, Benin, Senegal, Sierra Leone, Burundi, Togo, Liberia, Rwanda, Congo (Brazzaville), Central African Republic, Somalia, and Guinea Bissau
- **5 countries in Asia-Pacific: India,** Myanmar, Bangladesh, Indonesia and Papua New Guinea

Despite improving treatment rates, many African children are still given less effective medicines

Percentage of febrile children under five receiving any antimalarial * and percentage of febrile children under five receiving artemisinin-based combination therapy (ACT), African countries 2009–2012

* Note that this indicator should be interpreted with caution because it refers to antimalarial treatment among all febrile children, rather than among confirmed malaria cases.

Source: UNICEF global databases 2013, based on DHS, MICS and MIS.

Statistics & Monitoring Section/DPS

Malaria diagnostic testing

Percentage of children under 5 with fever receiving a finger or heel stick for malaria testing, African countries with available data 2009–2012

In most countries, the percentage of febrile children under 5 receiving malaria testing is less than **30 percent** - rural areas are lagging behind in most countries.

Source: UNICEF global databases 2013, based on DHS, MICS and MIS

Summary

- Mortality rates in children are highest in sub-Saharan Africa
- Top causes of death are pneumonia, malaria and diarrhoea
- There are disparities by wealth quintile in mortality rates and causes of death
- There are effective treatments for pneumonia, malaria and diarrhea and diagnostics for malaria
- However, children, especially those in the poorest quintile in sub-Saharan Africa, are often not accessing or receiving these treatments or diagnostics

HOW CAN WE BEST ACCELERATE THE INCREASE IN THE PROPORTION OF **CHILDREN IN AFRICA WITH PNEUMONIA, DIARRHOEA, AND MALARIA THAT RECEIVE APPROPRIATE TREATMENT?**