

Newborn and Child Health Commodities subgroup June 2022

Improved Access. Improved Services. Better Health Outcomes.

Forecasting Needs of RMNCH Medical Products

Jane Briggs and Andualem Oumer USAID MTaPS, Management Sciences for Health

Lillian Gu, FASP team Procurement and Supply Management (PSM) **Anthonia Ibeme**, PSM Nigeria

Introduction to the RMNCH Forecasting Supplement

Jane Briggs Senior Principal Technical Advisor Lead for MNCH and FP USAID MTaPS

Outline

- Background
- The RMNCH Forecasting Supplement- updates and products
- Quantification & Forecasting
- Contents of the RMNCH Forecasting Supplement
- Forecasting example Amoxicillin for pneumonia
- QAT* and the RMNCH Forecasting Supplement
- Experience from Nigeria
- Q&A
- Closing

Quantification of Health Commodities

RMNCH

Supplement for Forecasting Consumption of Select Reproductive, Maternal, Newborn, and Child Health Medical Products

Updated by the US Agency for International Development (USAID) Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program

June 2022

This descretes? Is made pointize by the generative subport of the America people through the US approx. The international Development (DARD) contracts no. 7200AAISC000%. The scalars are the meanwhiles of Associety of USA to the State of State Contemport.

Background

- Increasing access to and appropriate use of RMNCH medical products could save the lives of more than 6 million women and children per year
- A major component of access is **availability**
- To ensure availability, accurate and timely estimates/quantifications of supply requirements are needed
- At the national level, results of quantifications are essential for budgeting, resource allocation and mobilization, and planning for procurement and supply chain operations

The RMNCH Forecasting Supplement

- Previous version was published in 2016
- Updates based on new recommendations:

- New condition: Management of severe hypertension in pregnancy
- New products used for management of PPH
- New classifications of PSBI or very severe disease in newborns 0-59 days with respective changes in treatment options
- Updated based on new incidence and related data
- Organization of supplement by condition instead of by product
- Alternative forecasting approach (allocation) for magnesium sulphate and calcium gluconate
- Updated list of "Tools and Resources"

Priority Life-Saving Medical products (RH and MH)

Family Planning

emergency contraceptive pills

contraceptive implants

female condoms

tocin Injer Winfusion or IM 1 mL Single Dose We

oxytocin

Maternal Health

0 x 10 ml, Single Use Viak

Tranexamic Acid Injection

Heat-Stable Carbetocin

Calcium Gluconate

Labetalol

NOC THE REAL PROPERTY OF

Labetalol wdrochlor

Priority Life-Saving Medical Products (Newborn and CH)

Newborn Health

newborn resuscitation kits

antenatal corticosteroids (ACS)

chlorhexidine

Gentamicin

Ampicillin

Ampicillin for Injection

amoxicillin

Child Health

amoxicillin

ORS & zinc

USAID MTaPS Program

Complements other quantification resources

- Quantification of Health Commodities: A Guide to Forecasting and Supply Planning for Procurement JSI 2017
- Quantification of Health Commodities: Contraceptive companion guide JSI 2011
- Quantification of Health Commodities: Community Case Management Products Companion Guide 2014

What is quantification

Forecasting -

estimating the quantities of the products required for a specific health program (or service) for a specific period of time

Supply Planning -

determining when and in what quantity products should be delivered to prevent interruptions in supply

Quantification process

Source: JSI 2017. Quantification of Health Commodities: A Guide to Forecasting and Supply Planning for Procurement

USAID MTaPS Program

Data for Forecasting

- Historical consumption (logistics) data
 - Quantities of products dispensed/issued or used over a specified period of time
- Service data
 - Number of <u>services provided</u> number of visits where clients were treated or referred over a specified period of time
- Demographic and morbidity data
 - Number and characteristics of the **population** targeted for services over a specified period of time
 - Data on <u>prevalence</u> or <u>incidence</u> of a disease or health condition in a specific population

Challenges in the forecasting of RMNCH medical products

- Consumption data not available or reliable
- Lacking morbidity or incidence data for MNCH conditions
- Limited use of available data
- Programs may have ambitious scale-up plans
- Limited coordination between program and procurement units and sometimes donors too
- Limited use of standard treatment protocols (low dissemination, non-adherence etc.)

Content of the RMNCH Forecasting Supplement

- Introduction
- Forecasting considerations, algorithms, and examples for products used to manage 9 RMNCH conditions
 - 1. Reproductive Health: Family Planning and Prevention of STIs
 - 2. Prevention and Treatment of Postpartum Hemorrhage
 - 3. Prevention and Treatment of Hypertensive Disorders in Pregnancy
 - 4. Reduction of Risk of Respiratory Distress Syndrome in Preterm Births
 - 5. Newborn Resuscitation and Essential Care around the Time of Birth
 - 6. Newborn Cord Care
 - Treatment of Possible Serious Bacterial Infection (PSBI) or Very Severe Disease in Newborns and Young Infants (0–59 days)
 - 8. Treatment of Pneumonia in Children 2–59 Months
 - 9. Treatment of Diarrhea in Children under 5 Years
- Glossary
- Tools and resources

What is in each chapter

For each health condition/service:

- Introduction to the condition/service
- Product characteristics and other forecasting considerations
- Required data and potential sources (condition specific)
- Forecasting algorithms
- Summary of proxy data
- Example of forecasting assumptions and results
- References

<u>RM</u>NCH forecasting package

Flyer to describe the package RMNCH forecasting supplement plus

RMNCH forecasting algorithms

and a set of RMNCH forecasting excel tools

Prevention of PPH						
PADAMETED			CURRENT	FORECAST	FORECAST	
Tatal seculation (A)	A Desulation - provinus year perulation - (provinus 21/		20.000.000	1CAN 1	20,000,000	
	A: Population = previous gear population + (previous	2/.	20,000,000	20,400,000	20,000,000	
	(appual PGP is 2%)					
Total pregnancies (B)	B - 4 × % of pregnant women out of total population	4.7	800.000	816.000	832 320	
Total deliveries (C)	Alicies (D) B = X * / or pregnant women out or total population		720.000	734 400	749.088	
	rate of 10%)	0071	120,000	134,400	140,000	
Number of public HF deliveries (D)	D = C x % of deliveries in the public HFs_(Annual		360.000	396.576	434.471	
	increase in compliance of 4%)	4%	50%	54%	58%	
Number of public HF deliveries provided with	E = D x % compliance		288,000	337,090	391,024	
prevention for PPH (E)	(annual increase in compliance of 5%)	5%	80%	85%	90%	
Number of public HF deliveries given oxytocin for	F = E x % of deliveries given oxytocin	100%	288,000	337,090	391,024	
prevention of PPH (F)						
	ł					
Number of home deliveries (G)	G = C x % of home deliveries		324,000	301,104	277,163	
	(annual decrease of 4%)	-4%	45%	41%	37%	
Number of home deliveries provided with	H = G x % compliance		97,200	105,386	110,865	
misoprostol for prevention of PPH (H)	(annual increase in compliance of 5%)	5%	30%	35%	40%	
Quantity of oxytocin 10 IU ampoules needed for	J = F x II;	1	288,000	337,090	391,024	
prevention of PPH (J)	where I1: # of ampoules needed per case for					
	prevention = 10 IU					
Quantity of misoprostol 200 mcg tablet needed	K = H 8 I2;	3	291,600	316,159	332,595	
for prevention of PPH for home deliveries (K)	where I2: # of tablets needed per case for prevention					
	= 3 x 200 mcg = 3 tablets					
Total quantity of oxytocin 10 IU ampoules needed	L1 = J		288,000	337,090	391,024	
for prevention of PPH (L1)						
Total quantity of misoprostol 200 mcg tablet	L2 = K		291,600	316,159	332,595	
needed for prevention of PPH (L2)						

Forecasting Amoxicillin Needs for Pneumonia: An Example

Andualem Oumer Senior Technical Advisor Supply chain and Pharmacovigilance USAID MTaPS

Amoxicillin for pneumonia

Oral amoxicillin is recommended by WHO for the treatment of children with

- fast-breathing pneumonia with no chest indrawing or no general danger signs at the community level by qualified CHWs without the need for referral to HFs
- fast-breathing pneumonia or HIVnegative chest-indrawing pneumonia at first-level HFs without the need for referral to hospitals.

Amoxicillin forecast using demographic and incidence data

Steps

- 1. Calculate the total target number of cases to be treated for pneumonia
- 2. Calculate the number of cases per level to be treated with amoxicillin
- 3. Calculate the amount of amoxicillin needed per case
- 4. Calculate the total quantity of amoxicillin needed for the forecast period

Algorithm for pneumonia

R: Qty. of each medicine required to treat 2-59 m pneumonia cases in public sector = Qty. for Community (M) + Qty. for 1st-level public HFs (O) + Qty. for public hospitals (Q) R1: Amoxicillin 250 mg DT = (M1 + M2) + (O1 + O2 + O3) + (Q1 + Q2 + Q3) Plus other medicines

USAID MTaPS Program

Algorithm for pneumonia – Simplified

NI Qty of Amoxicillin 250 mg DT = (K1 + K2) + (M1 + M2 + M3)

Types of data useful for forecasting consumption of amoxicillin for pneumonia

Data	Source				
Total population per year	National census and projections, DHS, US Census				
Proportion/# of children under 5 years	Bureau International Programs Database, UN world population projections				
Incidence of pneumonia in children under 5	DHS. HMIS. national child morbidity and mortality				
Proportion/# of children with pneumonia with access to health services (at community, public, and private facilities)	surveys, special surveys, expert opinion, programmatic/strategic plans				
Proportion/# of children with pneumonia by type (fast breathing, chest indrawing, and severe) identified in the public sector by level of care					
Proportion/# of children with chest-indrawing and severe pneumonia cases identified at and referred by community and first-level HFs to higher-level HFs					
Proportion/# of each type of pneumonia case treated at each level of public health care by age group (2–11m, 12–36m, 37–59m)					
Proportion/# of cases treated with specific antibiotic regimens by type of pneumonia	HMIS, special surveys, national STG, WHO STG, expert opinion, programmatic/strategic plans				
Quantity (formulation and dosage) of each medicine used in each regimen to treat one case by age group	National STG, WHO STG, expert opinion				
	21				

Example: amoxicillin for pneumonia – forecast (1)

BOX 13. EXAMPLE OF COUNTRY FORECAST OF ANTIBIOTICS TO TREAT PNEUMONIA IN CHILDREN 2–59 MONTHS BASED ON MORBIDITY METHOD

Country X has a generalized HIV prevalence of 2.5%. The national pediatric STG recommends the use of oral amoxicillin for 5 days for the treatment of fast-breathing-only and HIV-chest-indrawing pneumonia. Fast-breathing pneumonia cases without any other complications can be treated at all levels, including by trained CHWs. The CHWs are trained to screen and refer HIV-positive, chest-indrawing pneumonia and severe pneumonia cases to public HFs. HIV-negative chest-indrawing cases can be treated at first- or higher-level public HFs. The guideline states that all severe and/or HIV-positive chest-indrawing pneumonia case should be referred to hospitals for treatment with ampicillin (IV/IM) and gentamicin (IV/IM) injections as the first-line option. Cases that don't respond to first line treatment should be treated with ceftriaxone IV/IM. Incidence of pneumonia in children under 5 is not known in the country; thus, the quantification team has agreed to take global average as a proxy.

Available data and assumptions:

- Total population: 20,000,000 (current year)
- Annual population growth: 2.0%
- Percentage of children 2–59m: 9%
- Incidence of pneumonia in children 2–59m: 231 episodes per 1,000 children (proxy)
- Percentage of pneumonia cases identified in the public sector, including at community level by CHWs, is estimated to increase by 5 percentage points per year (currently 60%).
- Percentage of 2–59m pneumonia cases treated in the public sector by level of care
 - Hospitals = 15%, expected to remain the same over the forecast period
 - First-level HFs = 65%, expected to decrease by 3 percentage points per year
 - Community level (by CHWs) = 20%, expected to increase by 3 percentage points per year
- Estimated proportions of pneumonia cases treated by level of care and type for the forecasting period based on HMIS data

	Community	First-level HFs	Hospitals
Fast breathing	100%	90%	10%
HIV-negative chest-indrawing	0%	10%	20%
Severe and/or HIV-positive chest-indrawing	0%	0%	70%

- Compliance to first-line treatment recommendations is estimated at 100% for all levels of care and is assumed to remain the same during the forecasting period.
- The following age groups and respective proportions were estimated based on HMIS data: 2–11m =3 3%, 12–36m = 37%, and 37–59m = 30%; these were assumed to be the same for all levels of care
- The following formulations and average quantities per case and age group were agreed by the quantification team, based on the STG and expert opinion:

		Level	Type of pneumonia	Formulations	Quantity per case by age group
Г	L	Community	Fast breathing only	Amoxicillin 250 mg DT	2–11m: 10 tablets
					12-59m: 20 tablets
Γ	2	First-level public	Fast breathing only and HIV-	Amoxicillin 250 mg DT	2–11m: 10 tablets
		HFs and public	negative chest-indrawing		12-36m: 20 tablets
		hospitals			37–59m: 30 tablets

Example: amoxicillin for pneumonia – forecast (2)

PARAMETER	INPUT			FORECAST YEAR 1	FORECAST YEAR 2
Total population (A)	A: Population = previous year population + (previous year population x	2%	20,000,000	20,400,000	20,808,000
	PGR)				
	(annual PGR is 2%)				
Total population of 2-59m (B)	B = A x % of population 2-59 months	9%	1,800,000	1,836,000	1,872,720
Number of total 2-59m pneumonia cases/episodes	C = B x Incidence of pneumonia in children 2-59 months; where 231	23.1%	415,800	424,116	432,598
(C)	episodes per 1,000 children				
Number of 2-59m pneumonia cases treated at	D = C x % of cases treated at public sector heath care services		249,480	275,675	302,819
public health care services, including CHWs (D)	(annual increase of 5%)	5%	60%	65%	70%
Number of 2-59m pneumonia cases treated by	(EI) # treated in the community (by CHWs) = D x % treated at		49,896	63,405	78,733
level of public health care (E)	community	3%	20%	23%	26%
	(E2) # treated in first-level public HFs = D x % treated at first-level HFs		162,162	170,919	178,663
	(annual decrease of 3%)	-3%	65%	62%	59%
	(E3) # treated in public hospitals = D x % treated at public hospitals		37,422	41,351	45,423
		0%	15%	15%	15%
Number of 2-59m pneumonia cases treated at	(F) # of fast-breathing cases treated at community (by CHWs)	100%	49,896	63,405	78,733
community level by type (F)	= EI x % of fast-breathing cases				
Number of 2-59m pneumonia cases by type	(G1) # of fast-breathing cases treated at first-level public HFs	90%	145,946	153,827	160,797
treated at first-level public HFs (G)	= E2 x % of fast-breathing cases				
	(G2) # HIV-negative and chest-indrawing cases treated at first-level	10%	16,216	17,092	17,866
	public HFs = E2 x % HIV-negative chest-indrawing cases				
Number of 2-59m pneumonia cases by type	(H1) # of fast-breathing cases treated at public hospitals	10%	3,742	4,135	4,542
treated at public hospitals (H)	= E3 x % of fast-breathing cases				
	(H2) # HIV-negative and chest-indrawing cases treated at public	20%	7,484	8,270	9,085
	hospitals				
	(H3) $\#$ of severe or HIV-positive chest-indrawing cases treated at public	70%	26,195	28,946	31,796
	hospitals				

Example: amoxicillin for pneumonia– forecast (3)

Number of 2-59m pneumonia cases treated with	th (I) # of cases treated with 5-day amoxicillin oral (fast breathing) 100		100%	49,896	63,405	78,733
specific regimen - Community/by CHWs (I)	= F x % treated with the regimen					
Number of 2-59m pneumonia cases by type	2-59m pneumonia cases by type (J) # of cases treated with 5-day amoxicillin oral (fast breathing and HIV-negative 100		100%	162,162	170,919	178,663
treated with specific regimen - first-level public	chest-indrawing) = $(GI + G2) \times \%$ treated with the regimen					
Number of 2-59m pneumonia cases by type	(K1) # of cases treated with 5-day amoxicillin oral (fast breathing and HI	V- I	100%	11,227	12,405	13,627
treated with specific regimen - public hospitals (K)	negative chest-indrawing) = $(HI + H2) \times \%$ treated with the regimen					
	(K2) # of cases treated with 5-day gentamycin IV/IM and ampicillin IV/IM ((severe	100%	26,195	28,946	31,796
	or HIV-positive chest-indrawing) = H3 x % treated with the regimen					
Quantity of amoxicillin 250 mg DT - community	(M1) Quantity for 2-11m cases = 1 x % of age group x L1; where, L1:	33%	10	164,657	209,238	259,819
level (M)	quantity per case = 10 DTs					
	(M2) Quantity for 12-59m cases: 1 x % of age group x L2; where, L2:	67%	20	668,606	849,632	1,055,021
	quantity per case = 20 DTs					
Quantity of amoxicillin 250 mg DT - first-level	(O1) Quantity for 2-11m cases = J x % of age group x N1; where, N1:	33%	10	535,135	564,032	589,588
public HFs (O)	quantity per case = 10 DTs					
	(O2) Quantity for 12-36m cases = J x % of age group x N2; where, N2:	37%	20	1,199,999	1,264,799	1,322,107
	quantity per case = 20 DTs					
	(O3) Quantity for 37-59m cases = J x % of age group x N3; where, N3:	30%	30	1,459,458	1,538,269	1,607,968
	quantity per case = 30 DTs					
Quantity of amoxicillin 250 mg DT - public	(Q1) Quantity for 2-11m cases = K1 x % of age group x P1; where, P1:	33%	10	37,048	40,938	44,969
hospitals (Q)	quantity per case = 10 DTs					
	(Q2) Quantity for 12-36m cases = K1 x % of age group x P2; where,	37%	20	83,077	91,800	100,839
	P2: quantity per case = 20 DTs					
	(Q3) Quantity for 37-59m cases = K I x % of age group x P3; where, P3:	30%	30	101,039	111,649	122,642
	quantity per case = 30 DTs					
Total quantity of amoxicillin 250 mg DT for	R = (M1+M2) + (O1+O2+O3) + (Q1+Q2+Q3)			4,249,019	4,670,355	5,102,951
treatment of pneumonia in children 2-59m (R)						

USAID GLOBAL HEALTH SUPPLY CHAIN PROGRAM Procurement and Supply Management

QAT Forecasting Module & the RMNCH Forecasting Supplement

June 2022

Lillian Gu, FASP team

Quantification Analytics Tool (QAT)

Cassette, 25 Test

USAID GLOBAL HEALTH SUPPLY CHAIN PROGRAM-Procurement and Supply

QAT Forecasting & RMNCH Guide

RMNCH Guide

QAT Tree Forecast

Comments from Anthonia Ibeme GHSC – PSM Nigeria

How and when the supplement was used

- 1. The forecasting supplement adapted and used to generated a three-year forecast for MNCH commodities in 5 States
- 2. Constituted State quantfication teams and trained over 50 members of the quantification team across the 5 States on the use of the supplement
- 3. The supplement will continue to be used by the State quantification team for annual forecast review.

Usefulness of the supplement

- 1. User friendly
- 2. Useful tool for data gathering
- 3. Algorithm follows a very detailed logic (the Excel forecast tool particularly very useful
- 4. Adaptable
- 5. Recommended assumptions/parameters
- 6. Regimens/products already selected in line with standard guidelines (useful for standardization and promotion of global best practices)

Other comments

Consumption based forecast should be generated and reconciled with the morbidity-based output where data is available

Quantification of Health Commodities

RMNCH

Supplement for Forecasting Consumption of Select Reproductive, Maternal, Newborn, and Child Health Medical Products

Updated by the US Agency for International Development (USAID) Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program

June 2022

This descreeed is made possible by the generation subpart of the American people through the US Agency for Immerionform (Development (Development (DeVE)) cardract no. 7200A480:08074. The candents are the reasonability of Astrogenetic Sciences for Health and Bayatti recossury reflect the verses of USAND this United Statis Covernment.

ACCESS AND DOWNLOAD:

https://www.mtapsprogram.org/ourresources/forecasting-consumption-of-selectreproductive-maternal-newborn-child-health-medicalproducts/

OR

- 1. Go to www.mtapsprogram.org
- 2. Click on Resources on main menu bar
- 3. Search by MNCH focus area

Prochainement en français

Questions

jbriggs@mtapsprogram.org aoumer@mtapsprogram.org

USAID MEDICINES, TECHNOLOGIES, AND PHARMACEUTICAL SERVICES (MTaPS) PROGRAM

Improved Access. Improved Services. Better Health Outcomes.

Resources

- Joseph: jmonehin@usaid.gov
- Patrick: pgaparayi@unicef.org

Subgroup information, recordings and presentations from previous webinars and meetings are available on the subgroup page of the Child Health Task Force website: <u>www.childhealthtaskforce.org/subgroups/newborn</u> *The recording and presentations from this webinar will be available on this page later today

Become a member of the Child Health Task Force: www.childhealthtaskforce.org/subscribe

Check out the Task Force Child Health & COVID-19 web page for additional resources!

Suggestions for improvement or additional resources are welcome. Please email childhealthtaskforce@jsi.com.